
Quantization in large scale for the description of planetary orbits in a 
mass independent approach of celestial bodies. 

Purposes: 

Mathematical formulations which are applied to the quantum theory for the atomic problem can 
be relevant to treat some aspects that involve the issue of planetary orbits. In the case of the 
solar system it will be shown that the mean planetary distances and revolution periods can be 
determined starting from a single parameter given by the mean distance between Mercury and 
the sun, in an approach independent of the masses of the bodies in this system. In the case of 
binary star systems the formulation of the quantum theory for the molecular problem can 
provide significant results as well. 

Begining: the melody of the Cosmos 

The immense advancement of knowledge in the study of atomic systems have provided for the 
mankind access to numerous relevant findings, especially those related to the development of 
the revolutionary technologies of informatics and nanotechnology. However, the principles that 
govern the universe of the atom, in other words, the quantum nature of “the infinitely small”, had 
their origins in the beginnings of the thought about the regency of mathematics in the workings 
of Nature. This thought appeared with Pythagoras and his School in old Greece, from a poetic 
inference trying to find mathematical relations which could describe natural phenomena, the first 
of this attempts consisting in establishing a relationship between simple numeric proportions 
and musical intervals. In this way, ratios between small integers were applied in an effective 
manner to build the musical scale produced by a string instrument. The pythagoreans later have 
adopted this notion to extend these ideas about musical harmony and mathematics to the 
movement of the planets: in a similar way ratios between small integers that rule the musical 
notes could rule the configuration of celestial bodies in the solar system. So, in the Ancient 
Greece Pythagoric cosmology, in a geocentric system, the sun and the planets, each in its own 
orbit, could be described as a musical instrument generating a melodic set of divine sounds 
expressed by the harmony of the movements of celestial bodies. In 1618, more than 2000 years 
later, the german astronomer Johannes Kepler resurrected this pythagorean idea about the 
harmony of the celestial bodies in his book “Harmonice Mundi” (World’s Harmony). Combining 
the orbital velocities of the different planets in a heliocentric system, the astronomer inferred that 
the ratios between these velocities could be compared to the ratio between the integers 
obtained in the musical scales. 

 Planetary distances and Integers 

The use of numerology has always fascinated and arouses curiosity among astronomers who 
aimed to estimate the distances between the sun and the planets. In reality the integers played 
an important role in the discovery of the planets Uranus (in 1781), Neptune (1846), the Asteroid 
Belt (1801) between the planets Mars and Jupiter and the asteroid Quiron (1978) between the 
planets Saturn and Uranus. 



If we consider initially the Titus-Bode empiric law, established in 1778 to estimate the planetary 
distances:  

D = 0.4 + (0.3) x 2​n​ AU, 

where​ D​ designates the distance to the ​n​-th planet in Astronomical Unit (AU), being equal to the 
distance between Earth and the sun. For Mercury we must take D=0.4 therefore resulting this 
way for Venus (n=0), D=0.7; for Earth (n=1), D= 1.0; for Mars (n=2), D=1.6 and so forth as 
shown in Table 1. 

 

Table I – Titus-Bode Law Illustration​. 

Planets Calculated Distance (AU) Observed Distance (AU) 

Mercury 0.4 0.3 

Venus 0.4 + 0.3×1=0.7 0.7 

Earth 0.4 + 0.3×2=1.0 1.0 

Mars 0.4 + 0.3×4=1.6 1.5 

─ 0.4 + 0.3×8=2.8 – 

Jupiter 0.4 + 0.3×16=5.2 5.2 

Saturn 0.4 + 0.3×32=10.0 9.6 

Uranus 0.4 + 0.3×64=19.6 19.2 

Neptune 0.4 + 0.3×128=38.8 30.1 



Pluto 0.4 +0.3x 256=77.2 39.5 

By Table I we can observe that the empirical relationship given by the Titus-Bode Law provides 
precise distances to the interior planets, but starts to show itself imprecise for Saturn, Uranus 
and Neptune, being unable to predict Pluto’s orbit.  

It is worth mentioning that when the Law was stated in 1778, no planet other than Saturn was 
known. The discovery of Uranus in 1781, whose distance in relation to the Sun predicted 
empirically in a good agreement in respect to its real distance, raised question amongst 
astronomers in respect to the gap correspondent to the algorism 2.8 as presented in Table I. It 
could then be found a new planet of a small size located in this position in relation to the sun 
that was still not discovered at the time. And in fact in the period comprised between 1801 and 
1807 the existence of these “small planets” was demonstrated, and where called afterwards 
“asteroids”, with mean distances of 2.8 AU, as indicated by the Titus-Bode Law. 

In its turn, the asteroid Quiron was predicted by the Italian astronomer Giuseppe Armellini who 
by formulating a new empirical law in 1922 indicated the existence of a planet precisely between 
Saturn and Uranus. In 1978 the North American astronomer Charles T Kowal discovered the 
asteroid Quiron at a distance from the Sun such as the one predicted based on Armellini’s 
empirical law expressed by the following mathematical relation: 

D = 1.53​n​, 

where ​D ​(in AU), represents the mean distance between the planets and the sun and is given in 
function of the values of ​n​ ranging from ​n = -2​  for Mercury; ​n = -1​  for Venus​; n = 0​  for the 
Earth; ​n = 1​ for Mars and so forth as shown in Table II: 

Table II – Armellini’s Law Illustration​. 

Planets D=1.53​n Calculated Distances 
(AU) Observed Distances (AU)  

Mercury 1.53​-2 0.43 0.39 

Venus 1.53​-1 0.65 0.72 

Earth 1.53​0 1.00 1.00 



Mars 1.53​1 1.53 1.52 

Vesta 1.53​2 2.34 2.36 

Camilla 1.53​3 3.58 3.48 

Jupiter 1.53​4 5.48 5.20 

Saturn 1.53​5 8.38 9.55 

Quiron 1.53​6 12.83 13.87 

Uranus 1.53​7 19.63 19.20 

Neptune 1.53​8 30.03 30.11 

Pluto 1.53​9 45.94 39.52 

The asteroids Vesta and Camilla are represented in Table II, respectively, the interior and 
exterior limits of the main asteroid belt with around the two thousand asteroids, which existence 
between Mars and Jupiter was predicted in 1766 by the Titius-Bode Law. Similarly, the Armellini 
Law, besides contemplating the distances of the known planets and asteroids, predicted the 
existence of another asteroid situated between Saturn and Uranus. However, this law shown 
itself unsatisfactory to determine the observed distance for the planet Pluto. 

Goals of the present investigation: Approaches based on the quantum theory for the 
description of planetary orbits​. 

1 – The atomic model of Bohr and the Solar System​ [1] 

It will be shown, in a similar procedure as adopted by Niels Bohr to describe the possible orbits 
of the single electron around the nucleus of the hydrogen atom, that it is possible to combine the 
mathematical equation that expresses Newton’s Second Law for the orbital movement of the 
planets with the mathematical equation that expresses Bohr quantization rule to obtain an 
expression for the mean planetary distances to the sun’s center. The resulting expressions 
allows to state that in a general way, the ratio between the mean planetary distances must obey 



the ratio between the square of the integers associated to those orbits, and to the revolution 
periods the ratio between the cubes of  these same integers. 

 

 

2 – A similar equation to the one of Schrödinger for the description of Solar System’s 
orbits [2-8]  

By bringing back the ideas of another physicist who was fundamental to the creation of the field 
of Quantum Mechanics - Erwin Schrödinger - by using an equation similar to the one he 
postulated for studying the universe of the atomic and subatomic worlds, was applied in this 
approach to describe the solar system in a plane involving an attractive field placed in the center 
of the system associated to a body with mass ​M​, allowing these studies to obtain the following 
group of results: 

● Mean planetary radius to all Terrestrial planets (Mercury, Venus, Earth and Mars). 
● Mean planetary radius to all the Jovian planets (Jupiter, Saturn, Uranus and 

Neptune). 
● Mean planetary radius to the dwarf planets - Pluto - and those recently discovered 

(Makemake, Haumea and Eris). 
● Mean radius to the main probability regions to find bodies in the Hungarian 

Asteroid Belt and in the Main Asteroid Belt. 
● Mean radius to all the Centaur asteroids and most of the trans-neptunian. 

 
 
3 – Molecular orbital method applied to the treatment of an extrasolar binary star 
      system [7-8] 
 
A similar approach to the one used for the calculation of equilibrium distances in a diatomic 
molecular systems was applied to estimate the mean distances of separation between binary 
stars in the extrasolar system HD 188753 Cygni. Based on the functions of tridimensional 
waves that describe the atomic orbit 1s for the hydrogen atom, and taking a​0​ = 0.387 AU, i.e, the 
mean planetary radius of Mercury, the variational method foresees a “equilibrium distance” for 
the two stars of approximately 1.0 AU. This result is similar to the separation observed of 0.66 
AU. 

Recent observations have been done to look into the formation geometry of protoplanetary 
disks around binary stars also allowing to describe the formation of circumbinary and 
circumstellar debris around these systems.​ ​By applying a molecular quantum mechanics model 
for the description of eletronic cloud distributions for the molecular system H​2​

+​ the results show 
that the description of the formation geometries of protoplanetary disks in function of the 



separation distance between the binary stars is similar to the distribution of the eletronic cloud 
around the two protons of the H​2​

+​ molecular ion in function of their separation distances. 

1. Application of the Bohr model to the Solar System 

This model that was applied successfully to the hydrogen atom consists of a nucleus with a 
positive charge and an electron with negative charge moving around this nucleus in a circular 
orbit. In a similar fashion to a miniature of the Solar System only a few specific orbits would be 
allowed. The intrinsically discontinuous nature of the atomic world was imposed by the condition 
that a physical quantity associated to the electron movement in an orbit, designated of angular 
moment (​L​) of the electron (the product of its mass ​m ​by its orbital velocity ​v​ and its distance ​r​ to 
the atomic nucleus), was imposed be written by multiples of integers ​n​ of the Planck’s constant 
h or “quantum of action” divided by ​2π​. 

   designated quantization rule of Bohr. 

Each electron orbit around the hydrogen atom nucleus, in the context of the Bohr model, is 
therefore labeled by the integer ​n​, starting with ​n=1​ which characterizes the fundamental state 
of this atom, therefore, the unit is associated to the first allowed orbit, that one closest to the 
nuclear region. 

In an analogous formulation, for the Solar System, in which the intensity of the gravitational and 
centripetal force are equal: 

 

According to the De Broglie’s wave-particle duality principle: 

 

where λ corresponds to the wave lenght associated to the linear moment ​p​ of each planet and 
g*​ is a constant equivalent to Planck’s constant. 



Assuming circular orbits for the planets the stationary wave condition is given by: 

 

These two last equations show that for each orbit the intensity of the angular moment can be 
described as: 

 

which is simillar to the semi-classic condition imposed by Bohr for the quantization of the 
angular moment (​L = nh/2π​). 

The set of equations above shows that: 

 

and the orbital velocity given by: 

 

The revolution period T for each planet can then be determined: 

 

The second and third Kepler laws for the planetary orbits can be easily verified based on the 
equations for ​r ​and ​T​. 

If ​n​i​ ​and ​n​j​ ​are numbers corresponding to any two orbits ​i​ and ​j​, respectively, then: 



 

and 

 

so, 

 

For the revolution periods ​T 

 

and 

 

so, 

 

The ratio between the mean distances and periods like the ones given above suggest the 
following principle: 

The ratio between the mean planetary distances obeys the ratio between the square of the 
integers associated to their respective orbits, and for the periods, the ratio between the cubes of 
these same integers. 



We have then the following expressions of recurrence for the planetary orbits: 

 

and 

 

 

 

 

 

 

 

Table III. Mean planetary radius and periods calculated directly from the recurrence 
expressions​. 

n r​i+1 ​=r​i​[(n​i​+1)/n​i​)]² T​i=1​= Ti [(n​i​+1) /(n​i​)³ 

1 r​1​=0.387 T​1​= 0.241 

2 r​2​=r​1​(2/1)² = 1.548 T​2​= T​1​(2/1)³=1.928 

3 r​3​=r​2​(3/2)² = 3.484 T​3​=T​2​(3/2)³=6.507 

4 r​4​=r​3​(4/3)² = 6.194 T​4​=T​3​(4/3)³=15.424 



5 r​5​=r​4​(5/4)² = 9.678 T​5​=T​4​(5/4)³=30.125 

6 r​6​=r​5​(6/5)² = 13.936 T​6​=T​5​(6/5)³=52.056 

7 r​7​=r​6​(7/6)² = 18.968 T​7​=T​6​(7/6)³=82.663 

8 r​8​=r​7​(8/7)² = 24.774 T​8​=T​7​(8/7)³=123.392 

9 r​9​=r​8​(9/8)² = 31.355 T​9​=T​8​(9/8)³=175.689 

10 r​10​=r​9​(10/9)² = 38.710 T​10​=T​9​(10/9)³=241.0 

11 r​11​=r​10​(11/10)² = 46.839 T​11​=T​10​(11/10)³=320.771 

12 r​12​=r​11​(12/11)² = 55.742 T​12​=T​11​(12/11)³=416.448 

13 r​13​=r​12​(13/12)² = 65.419 T​13​=T​12​(13/12)³=529.447 

In Table III it can be observed that the mean radius for the planets Venus and Earth as well as 
the mean radius associated to the asteroid that describes the interior orbit of the Asteroid Belt 
and those of the Hungarian Belt could not be verified. 

A procedure for the calculation of the mean distances of the planets Venus and Earth and 
of the asteroid associated to the interior orbit of the Main Asteroid Belt and those of the 
Hungarian Belt 

These orbits are empirically calculated establishing a class of numbers ​m​, associated to the 
value of the integer ​n​ corresponding to a given orbit, ranging from zero to ​n​. 

For example: consider ​n = 2​ with m​ = 0​, ​1, 2​ and through the pair (​n = 2; m = 2​)​ ​the orbits 
associated to the pairs (​n = 2; m = 1​) and (​n = 2; m = 0​) can be determined from the following 
calculations: 



 

where​, 

 

For the periods 

 

and 

      where, 

 

Table IV. Comparison between the observed results and those calculated from the model. 

Position Planet / 
asteroid 

Mean Radius (AU) Orbital Period (terrestrial years) 

Calculated Observed Calculated Observed 

n=1;m=1 Mercury 0.387 0.387 0.241 0.241 



n=2;m=0 Venus 0.774 0.723 0.682 0.615 

n=2;m=1 Earth 0.968 1.0 0.953 1.0 

n=2;m=2 Mars 1.548 1.527 1.928 1.881 

n=3;m=0 HIL 1.742 1.780 2.30 2.375 

n=3;m=1 HOL 1.935 2.0 2.694 2.828 

n=3;m=2 Vesta 2.515 2.361 3.994 3.60 

n=3;m=3 Camilla 3.483 3.477 6.507 6.502 

n=4 Jupiter 6.192 5.203 15.424 11.962 

n=5 Saturn 9.675 9.539 30.125 29.458 

n=6 Chiron 13.932 13.708 52.056 50.760 

n=7 Uranus 18.963 19.191 82.663 84.010 

n=8 Nessus 24.768 24.655 123.392 122.420 

n=9 Neptune 31.347 30.061 175.689 164.790 

n=10 Pluto 38.70 39.529 241.0 248.540 

n=11 Makemake 46.827 45.428 320.771 306.186 



n=12 2004 OJ14 55.728 55.762 416.448 411.277 

n=13 Eris 65.403 67.902 529.477 559.531 

If we consider the expression for the mean planetary radius given by: 

 

for all the planetary orbits where r​0​ = 0.387AU, the mean radius of Mercury and ​m = n,​ with the 
exception of the orbit of Venus with (​n = 2; m = 0​) and that of Earth (​n = 2; m = 1​),  that were 
obtained through the orbit of Mars (​n = 2; m = 2​)​,​ and those corresponding to the interior ring (​n 
= 3; m = 0​) and the exterior ring (​n = 3; m = ​1) of the Hungarian Asteroid Belt and that 
assocated to the interior ring of the Main Asteroid Belt (​n = 3; m = 2​) which were obtained 
starting from the corresponding orbit of the exterior ring of this belt (​n = 3; m=3​), then the 
original expression for the calculation of the mean planetary distances remains unaltered and so 
the values for the mean planetary radius can be determined as shown in Table V. 



 Table V. Mean planetary radius calculated by the equation ​r = [(n​2​ + m​2​)/2] r​0 

 

Considerations 

The state corresponding to the integer ​n​ =8 was published in a first theoretical work [1] as an 
empty state, aproximately at the same time in which two asteroids were discovered in the 
predicted position of 24.678 AU, between the orbits of Uranus and Neptune, named 1993HA2 
(mean radius of 24.76AU) and 1995DW2 (mean radius of 24.17AU). Recently they were named 
Nessus and Hylonome respectively. 

The second and third Kepler laws for the planetary orbits can be verified in the equations for the 
mean planetary distances and revolution periods determined according to the proposed model. 

According to the model, the ratio between the orbital velocities is given by the inverse of the 
ratio between the integers that label each orbit; this result had already been determined by 
Kepler. 



The theorical mean radius for Jupiter (6.2 AU) differs approximately by 19% of the observed 
value (5.2 AU). This result can be attributed to the fact that Jupiter contributes with 
approximately 80% for the total planetary mass, in other words, a strong gravitational attraction 
effect in relation to the others celestial bodies. 

It’s important to highlight that the spectrum of numbers ​m​ for the integers n=2 and n=3 appear 
only for the planets and asteroids situated between the sun and Jupiter. 

This model presupposed an unique empty state, found for the pair (n=1; m=0), which could 
correspond to the existence of bodies orbiting around the sun every 28 days and at a medium 
radius of 0.18U. 

The model could predict the orbits of the dwarf planets Makemake and Eris, as well the orbit of 
Pluto. 

Conclusion​s 

The theoretical results presented for all the mean planetary distances of the bodies orbiting the 
Solar System have a single starting parameter which is the mean radius of the orbit of Mercury 
and do not depend on the masses of these bodies indicating a good accordance with the 
observed distances by the astronomers for both asteroids and heavy planets such as Neptune, 
Saturn and Uranus, as well for the dwarf planets Pluto, Makemake and Eris. Therefore, the 
pythagorean idea about the harmony of celestial spheres seems to be equally present in the 
beauty of the dance that the electrons do around the atomic nucleus and, in a significant 
manner, manifesting trough the spectral lines characteristic of the electromagnetic radiations 
emitted by each atom, the structural unit forming part of the constitution of all elements found in 
Nature. 

Could the set of results above be associated to the discretization or quantization of the inherent 
geometry of the planetary orbits? 

2. An equation similar to that of Schrödinger​ for describing planetary orbits. 

An equation similar to Schrödinger’s for a disk can be obtained applying the concepts of 
quantum mechanics to describe the Solar System situated in a plane involving an attractive field 
situated in the center of this system associated to a body of mass ​M​ [2-8]. For a body of mass ​m 
orbiting around this center, the​ ​Schrödinger equation in polar coordinates is given by: 

 



where ​µ​ is the reduced mass of bodies of mass ​M​ and ​m​ and ​V(r)​ the potential gravitational 
interaction between these bodies. 

In the above equation, given that the potential ​V​ is a function only of the radial variable ​r​, this 
equation can solved by separating the variables in their radial and angular parts: 

 

Similarly to the resolution of the Schrödinger’s equation for the atomic case the presented 
equation has solutions Ψ depending on the numbers ​n ​e ​l​ which: 

 

As for the calculation of electronic mean distances, the mean planetary distances (mass peaks) 
can be obtained by: 

 

TABLE VI. Mean distances calculated through an equation similar to Schrödinger’s 
equation for solutions associated to the “states” ​1/2 ≤​ ​n​ ≤ ​9/2​ e ​l​ = ​0, 1​ …​n​-​1/2 

Celestial bodies Pairs (​n, ​l)  Calculated mean radius 
in (AU) 

Fundamental radius (1/2, 0) 0.055 

Mercury (3/2,0); (3/2, 1) 0.387; 0.332 



Venus (5/2, 2) 0.829 

Earth (5/2, 0); (5/2, 1) 1.050; 0.995 

Mars (7/2, 3) 1.548 

Hungaria asteroids (7/2, 0); (7/2, 1); (7/2, 2) 2.046; 1.990; 1.824 

Main asteroid belt 
(9/2, 0); (9/2, 1);  

(9/2, 2); (9/2, 3); (9/2, 4);  

3.372; 3.317;  

3.151; 2.875; 2.488 

Source: ​http://www.johnstonsarchive.net/astro/ 

In Tables VII and VIII the stable orbits of some celestial bodies have mean radii at an average 
distance between two calculated mass peaks.  

TABLE VII. Mean distances calculated through the solutions of an equation similar to 
Schrödinger’s for funcions associated to the “states” ​11/2​ ≤ ​n​ ≤ ​27/2​  and ​l​ = 0 

Celestial Bodies  Calculated mass 
peaks (​n, l; r​nl​)  

 Calculated radius 
(AU) 

Observed radius 
(AU) 

Jupiter, 2000 OZ21 (11/2, 0; 5.031) 5.031 5.203, 4.867 

Hidalgo, 1998 WL34 (11/2, 0; 5.031), 
13/2, 0; 7.021) 6.026 5.747, 5822 

1998 HO121, 2000 
VU2 (13/2, 0; 7.021) 7.021 7.135, 6892 

Okyrhoe, 1999 
LE31 

(13/2, 0; 7.021), 
(15/2, 0; 9.343) 8.182 8.367, 8.133 

http://www.johnstonsarchive.net/astro/


Saturn 1999 RG33 (15/2, 0; 9.343) 9.343 9.539, 9.377 

Echeclus, Thereus (15/2, 0; 9.343), 
(17/2, 0; 11.997) 10.670 10.764, 10.638 

Damocles, Elatus (17/2, 0; 11.997) 11.997 11.843, 11.760 

Chiron, 166P/NEAT (17/2, 0; 11.997), 
(19/2, 0; 14.982) 13.489 13.710, 13.830 

Chariklo, 1996 
AR20 (19/2, 0; 14.982) 14.982 15.811, 15.197 

Bienor, 1999 JV127 (19/2, 0; 14.882), 
(21/2, 0; 18.299) 16.640 16.519, 16.724 

Uranus, Asbolus (21/2, 0; 18.299) 18.299 19.191, 18.080 

Pholus, Pelion (21/2, 0; 18.299), 
(23/2, 0; 21.948) 20.123 20.357, 20.053 

1999 HD12, 2002 
DH5 (23/2, 0; 21. 948) 21.948 21.322, 22.026 

Dioresta, 1995 
SN55 

(23/2, 0; 21.948), 
(25/2, 0; 25.929) 25.929 25.131, 24.676 

Hylonome, Nessus (25/2, 0; 25.929) 23.934 23.948, 23.564 

2002 CB249, 2002 
FY36 

(25/2, 0; 25.929), 
(27/2, 0; 30.241) 28.085 28.421, 28.969 



Neptune, 2001 
QR322 (27/2, 0; 30.241) 30.241 30.061, 30.302 

Source: http://www.johnstonsarchive.net/astro/ 

TABLE VIII. Mean distances calculated through the solutions of an equation similar to 
Schrödinger’s for the functions associated with the “states”  ​27/2​ ≤ ​n ​≤ ​33/2​  and ​l​ ​=0 

Celestial Bodies Calculated mass 
peaks(​n, l; r​nl​) 

Medium radius 
calculated (AU) 

Observed radius 
(AU) 

Neptune, 2001 
QR322 (27/2, 0; 30.241) 30.241 30.061, 30.302 

1999 CP133, 2001 
XH255 (29/2, 0; 34.885) 34.885 34.857, 34.810 

Pluto, 90482 Orcus (31/2, 0; 39.861) 39.861 39.529, 39.187 

Haumea, Varuna (31/2, 0; 39.861), 
(33/2, 0; 45.168) 42.515 43.136, 42.806 

Makemake, Logos (33/2, 0; 45.168) 45.168 45.428, 45.074 

    

Source: http://www.johnstonsarchive.net/astro/ 

The set of results presented in the tables VI, VII and VIII, obtained through the solutions of an 
equation similar to Schrödinger’s, allowed to determine: 

●  The value of a “fundamental” radius of 0.05AU, distance where a great number of 
“hot Jupiter” planets is found in extrasolar systems. 

●  Mean planetary distances for all the Terrestrial planets (Mercury, Venus, Earth 
and mars). 

● Mean planetary distances for all the Jovian planets (Jupiter, Saturn, Uranus and 
Neptune). 



● Mean planetary distances for all the dwarf planets (Pluto and those recently 
discovered Makemake, Haumea and Eris). 

● Mean radius for the main probability regions where it can be found bodies in the 
Hungarian and Main Asteroid Belts. 

● Mean planetary distances for all the Centaur asteroids and most of the 
trans-neptunian celestial bodies.  

 
 
 
 
 
 
3. A model similar to the molecular quantum mechanics applied to binary star 
systems 

3.1 The extrasolar system HD 188753 Cygni 

HD 188753 is an unique extrasolar system in which an unique planet is found orbiting in a triple 
star system. The planet, a “hot Jupiter” moves around the primary star at a distance of 0.0446 
AU (11.5% of the distance between Mercury and the sun). The binary star system is found at a 
mean separation distance between them of 0.66 AU and 12.3 UA from the primary star. The 
picture below depicts a representation of this system. 

 

The variational method applied to the H​2​
+​ ​molecular ion 



The wave function of this system is written as a linear combination of the atomic orbitals ​1s​ of 
the hydrogen atom centered in the protons ​a​ and ​b​: 

 

The system’s energy is given by: 

 

where H is the hamiltonian operator for the molecular ion: 

 

Denoting: 

 

and 

 

 then the expression for the total energy ​E​ for this system becomes: 



 

The minimum of energy in relation to c​1​ and c​2​ is given by: 

 

and 

 

The two non-trivial solutions are obtained by: 

 

The solutions for this determinant are: 

 

and 

 



Replacing these expressions in the above equation for the total energy ​E​ it can be solved 
through the ratio c​1​/c​2​ resulting: 

 

leading to the symmetric and antisymmetric solution of the wave function: 

 

 

The constant ​c​1​ can be obtained by the normalization condition of ​Ψs​ e ​Ψa 

 

or 

 

or 

 

So : 



 

The solutions can be given by: 

 

and 

 

Part of the Hamiltonian operator is the same for the hydrogen atom: 

 

resulting 

 

J ​denoting the integral: 

 



where D = r​ab​/a​0​; a​0​ representing the Bohr’s radius. In a similar fashion, 

 

where 

              and, 

 

The energies are then given by the following expressions: 

 

and 

 

The stabilization energy is given by the simetric solution ​E​s​ ​of Schrödinger’s equation. 

Denoting: 



 

and 

 

the expression for ​E​s​ ​becomes: 

 

Defining ​E(r)​ as: 

 

so 

 

The minimum of energy is given by the equilibrium distance between the two protons. 

The variational method allows obtaining a value for the dissociation energy of 1.77 eV for the 
H​2​

+​ molecular ion at an equilibrium distance of 1.32 Å. The exact value is 2.78 eV for an 
equilibrium distance of 1.06 Å. 



In the case of the binary stars of the  HD 188753 Cygni system if we take the following values 
for ​r​ab​ = 0.5 AU;  0.75 AU; 1.0 AU; 1.25 AU e 1.5 AU​ ​the results indicate a value  around 1.0 AU 
for the “equilibrium distance” close then to the observed value of 0.66 AU[7]. 

 

3.2 Geometries of protoplanetary disk formations around a binary star system 

Curiously, a recent observation research had as goal to investigate the geometry of 
protoplanetary disk formation in relation to the separation distances in binary star systems 
(​Trilling, D. E. et al. (2007). Debris disks in main-sequence binary systems. Astrophys. J. 658, 
1289-1311)​.  When studying the spectral distribution of energy and typical temperatures (around 
100-200K) of dust disks around 69 binary star systems, the results pointed out a few systems in 
which the dimensions of the dust disks were much bigger than the separation distance betwen 
the stars implying the existence of circumbinary debris disks with typical separation distances 
smaller than 3.0 AU. On the other hand, in other binary systems were observed dust distances 
much smaller than the separation distances between the stars indicating the existence of 
circumstellar dust disks with typical separation distances bigger than 50.0 AU. In the remaining 
systems studied the dimensions of the protoplanetary disks were similar to the separation 
distances between binary stars, indicating instability in the location of these disks. 

Apparently, there are clear similarities among the aspects of the chemical bonding obtained by 
molecular quantum mechanics applied to the system H​2​

+​and the general characteristics of the 
geometry of formation of protoplanetary disks around binary star systems, particularly in those 
related to the separation distance between stars. In this sense, the circumbinary debris disks 
observed at small separation distances of less than 3.0 AU can be considered similar to the 
formation of stable eletronic clouds around the two nuclei of molecular ion H​2​

+​ at the equilibrium 
distance. In a corresponding way, the circumstellar debris disks observed for the binary 
separations bigger than 50.0 AU are similar to the physical aspects associated to the process of 
disassociation of the molecular ion H​2​

+​  resulting in the formation of a hydrogen atom and a 
proton. Besides, the binary star systems that do not present debris disks circumbinary or 
circumstellar exhibits unstable electronic cloud geometry. This arrangement is then surprisingly 
similar to that one found when the two nuclei of the species H​2​

+​ move away from the equilibrium 
distance of this molecular ion. 



Although the proposed model does not take into account the attractive gravitational potential 
between the binary stars it seems that the mathematical theoretical framework that describes 
the geometry of formation of protoplanetary disks in these systems can be similar to the one 
employed to obtain the electronic distribution functions for the molecular ion H​2​

+​ in its stable 
structure as well as in its dissociated form. 

 

http//:www.nasaimages.org/luna/servlet/detail/nasaNAS~12~12~67363~172144:Where 
-Planets-Take- Up-Residence. 

 


